CONTENTS | Pı | Preface x | | | | | |----|-----------|---|--|-----|--| | N | omen | clature | | xix | | | A | bbrev | iations | | XXV | | | 1 | Intr | oduction | | 1 | | | | | General Architectures of Hybrid Electric Vehicle, 2 1.1.1 Series Hybrid, 2 1.1.2 Parallel Hybrid, 3 1.1.3 Series—Parallel Hybrid, 3 Hybrid Vehicle System Components, 5 Hybrid Vehicle System Analysis, 6 1.3.1 Power Flow of Hybrid Vehicles, 6 1.3.2 Typical Drive Cycles, 7 1.3.3 Vehicle Drivability, 8 1.3.4 Vehicle Fuel Economy and Emissions, 8 | | | | | 2 | | Controls of Hybrid Vehicle, 8 References, 10 | | 4.4 | | | 2 | | ic Components of Hybrid Vehicle | | 11 | | | | 2.1 | Prime Mover, 11 2.1.1 Gasoline Engine, 11 | | | | 3 4 | 2.2
2.3 | 2.1.3
Electric
Energy
2.3.1
2.3.2 | Diesel Engine, 12 Fuel Cells, 14 Motor with DC/DC Converter and DC/AC Inverter, 15 Storage System, 17 Energy Storage System Requirements for Hybrid Vehicles, 17 Basic Types of Batteries for Hybrid Vehicle System Application, 19 ission System in Hybrid Vehicle, 24 | | |--------------------------|---|---|----| | | Referen | nces, 24 | | | Hyb | rid Vehi | icle System Modeling | 25 | | 3.1
3.2
3.3
3.4 | Modeli
Modeli
3.4.1
3.4.2 | ng of Internal Combustion Engine, 25
ng of Electric Motor, 32
ng of Battery System, 37
ng of Transmission System, 42
Modeling of Clutch and Power Split Device, 42
Modeling of Torque Converter, 50
Modeling of Gear Box, 52 | | | 3.5 | 3.4.4 | Modeling of Geal Box, 32 Modeling of Transmission Controller, 53 ing of Final Drive and Wheel, 56 | | | 3.6
3.7 | Modeli
PID-Ba | ing of Vehicle Body, 58 ased Driver Model, 59 nces, 61 | | | Pow | er Elect | tronics and Electric Motor Drives of Hybrid Vehicle | 63 | | 4.1 | Basic I | Power Electronic Devices, 63 Diodes, 64 | | | 4.2 | 4.1.2
4.1.3
4.1.4
4.1.5
DC/DC | Thyristors, 65 Bipolar Junction Transistors, 67 Metal-Oxide-Semiconductor Field Effect Transistors, 69 Insulated Gate Bipolar Transistors, 71 C Converter, 72 Basic Principle of DC-DC Converter, 72 | | | | 4.2.2 | Step-Down (Buck) Converter, 74 4.2.2.1 Steady-State Operation, 76 4.2.2.2 Output Voltage Ripple, 80 | | | | 4.2.3
4.2.4 | Step-Up (Boost) Converter, 83
Step-Down/Up (Buck–Boost) Converter, 86 | | | | 4.2.4 | DC-DC Converters Applied in Hybrid Vehicle
Systems, 90
4.2.5.1 Isolated Buck DC-DC Converter, 90 | | | | | 4.2.5.2 Four-Quadrant DC-DC Converter, 94 | | | 4.3 | DC-A | C Inverter, 94 | | |---|---------|--|-----| | | 4.3.1 | Basic Concepts of DC-AC Inverters, 95 | | | | | Single-Phase DC-AC Inverter, 99 | | | | | Three-Phase DC-AC Inverter, 102 | | | 4.4 | | ic Motor Drives, 106 | | | | 4.4.1 | BLDC Motor and Control, 106 | | | | | 4.4.1.1 Operation of BLDC Motor, 106 | | | | | 4.4.1.2 Torque and Rotating Field Production, 107 | | | | | 4.4.1.3 BLDC Motor Control, 108 | | | | | 4.4.1.4 BLDC Motor Torque—Speed Characteristics | | | | | and Typical Technical Parameters, 113 | | | | | 4.4.1.5 Sensorless BLDC Motor Control, 113 | | | | 4.4.2 | | | | | | 4.4.2.1 Basic Principle of AC Induction Motor | | | | | Operation, 115 | | | | | 4.4.2.2 Controls of AC Induction Motor, 118 | | | 4.5 | Plug-1 | in Battery Charger Design, 124 | | | | | Basic Configuration of PHEV/BEV Battery Charger, 124 Power Factor and Correcting Techniques, 125 | | | | | _ | | | | | Controls of Plug-In Charger, 127 ences, 129 | | | | Reiere | ences, 129 | | | | | | | | Ene | ray Sta | orage System Modeling and Control | 131 | | | - | | | | 5.1 | | | | | 5.2 Methods of Determining State of Charge, 133 | | | | | | | Current-Based SOC Determination, 133 | | | | 5,2.2 | Voltage-Based SOC Determination, 136 Extended Kalman Filter-Based SOC Determination, 145 | | | | | SOC Determination Based on Transient Response | | | | 5.2.4 | Characteristics, 147 | | | | 525 | Fuzzy Logic—Based SOC Determination, 149 | | | | | Combination of Estimated SOCs by Different | | | | 5.2.0 | Approaches, 151 | | | | 5.2.7 | | | | | 5.2.7 | Vehicle Applications, 152 | | | 5.3 | Estim | ation of Battery Power Availability, 154 | | | | 5.3.1 | PNGV HPPC Power Availability Estimation, 156 | | | | 5.3.2 | | | | | 5.3.3 | | | | | | Equivalent Model, 159 | | | E A | | 1 | | | 5.4 | Batte | ry Life Prediction, 165 | | | 5.4 | 5.4.1 | ry Life Prediction, 165 | | 6 199 | | 5.4.3 | | |-----|---------|--| | | 5.4.4 | SOL Determination under Cycling Condition, 172 | | | | 5.4.4.1 Offline Lifetime Determination under Cycling | | | | Condition, 173 | | | | 5.4.4.2 Online SOL Determination under Cycling | | | | Condition, 173 | | 5.5 | Cell I | Balancing, 180 | | | 5.5.1 | SOC Balancing, 181 Hardware Implementation of Balancing, 181 | | | 5.5.2 | Hardware Implementation of Balancing, 181 | | | 3.3.3 | Cell Balancing Control Algorithms and Evaluation, 184 | | 5.6 | Esum | ation of Cell Core Temperature, 192 | | | 5.6.1 | Introduction, 192 | | | 5.6.2 | Core Temperature Estimation of Air-Cooled | | | | Cylinder-Type HEV Battery, 193 | | 5.7 | | y System Efficiency, 196 | | | Refere | ences, 197 | | _ | | | | Ene | ergy Ma | magement Strategies of Hybrid Vehicle | | 6.1 | Introd | uction, 199 | | 6.2 | | Based Energy Management Strategy, 200 | | 6.3 | Fuzzy | Logic-Based Energy Management Strategy, 201 | | | 6.3.1 | Fuzzy Logic Control, 202 | | | 6.3.2 | Fuzzy Logic-Based HEV Energy Management | | | | Strategy, 209 | | 6.4 | Detern | nination of Optimal ICE Operating Points of Hybrid | | | Vehicle | e, 218 | | | 6.4.1 | Mathematical Description of Problem, 219 | | | 6.4.2 | Procedures Determining Optimal Operating Points, 220 | | | 6.4.3 | Golden Section Search Method, 221 | | | 6.4.4 | Determining Optimal Operating Points, 221 | | | 6.4.5 | Example of Optimal Determination, 222 | | | 6.4.6 | Performance Evaluation, 226 | | 6.5 | Cost F | unction-Based Optimal Energy Management Strategy, 233 | | | 6.5.1 | Mathematical Description of Cost Function—Based Optimal | | | | Energy Management, 234 | | | 6.5.2 | Example of Optimization Implementation, 237 | | 6.6 | Optima | I Energy Management Strategy Incorporated with Cycle | | | Pattern | Recognition, 239 | | | 6.6.1 | Driving Cycle/Style Pattern Recognition Algorithm, 239 | | | 6.6.2 | Determination of Optimal Energy Distribution, 240 | | | Referen | nces, 242 | | | | | | 7 | Othe | er Hybrid Vehicle Control Problems | 245 | |---|-------------------|---|-----| | | 7.1
7.2 | Basics of Internal Combustion Engine Control, 245 Engine Torque Fluctuation Dumping Control Through Electric Motor, 247 7.2.1 Sliding-Mode Control, 248 | | | | | 7.2.2 Engine Torque Fluctuation Dumping Control Based on Sliding-Mode Control Method, 251 | | | | 7.3 | High-Voltage Bus Spike Control, 253 | | | | 7.4 | Thermal Control of HEV Battery System, 258 7.4.1 Combined PID Feedback with Feedforward Battery Thermal System Control Strategy, 260 7.4.2 Optimal Battery Thermal Control Strategy, 262 | | | | 7.5 | HEV/EV Traction Motor Control, 265 | | | | 7.0 | 7.5.1 Traction Torque Control, 265 | | | | | 7.5.2 Anti-Rollback Control, 266 | | | | 7.6 | Active Suspension Control of HEV/EV Systems, 267 7.6.1 Suspension System Model of a Quarter Car, 269 7.6.2 Active Suspension System Control, 270 | | | | | References, 277 | | | 8 | | g-In Charging Characteristics, Algorithm, and Impact
Power Distribution System | 279 | | | 8.1
8.2 | Introduction, 279 Plug-in Hybrid Vehicle Battery System and Charging Characteristics, 280 8.2.1 AC-120 Plug-In Charging Characteristics, 280 8.2.2 AC-240 Plug-In Charging Characteristics, 281 8.2.3 Characteristics of Rapid Public Charging, 284 | | | | 8.3 | Impacts of Plug-in Charging on Electricity Network, 284 8.3.1 Impact on Distribution System, 286 8.3.2 Impact on Electric Grid, 288 | | | | 8.4 | Optimal Plug-In Charging Strategy, 289 8.4.1 Optimal Plug-In Charge-Back Point Determination, 290 8.4.2 Cost-Based Optimal Plug-In Charging Strategy, 291 References, 298 | | | 9 | Hyl | brid Vehicle Design and Performance Analysis | 299 | | | 9.1
9.2
9.3 | 31 | | | | | 9.3.1 Drivability Calculation, 307 | | | | 9.3.2 Preliminary Sizing of Main Components of Hybrid
Vehicle, 310
9.3.2.1 Sizing Prime Mover, 310 | | |-------------|--|-----| | | 9.3.2.2 Sizing Transmission/Gear Ratio, 312 | | | | 9.3.2.3 Sizing Energy Storage System, 312 | | | | 9.3.2.4 Design Examples, 315 | | | 9.4 | Fuel Economy and Emissions Simulation Calculations, 320 References, 323 | | | Append | | 325 | | | Estimation Techniques | 323 | | A. 1 | Dynamic Systems and Mathematical Models, 325 | | | | A.1.1 Types of Mathematical Models, 325 | | | | A.1.2 Linear Time-Continuous Systems, 326 | | | | A.1.2.1 Input—Output Model of Linear Time-Invariant | | | | and Time-Continuous System, 326 A.1.2.2 State Space Model of Linear Time-Invariant | | | | and Time-Continuous System, 328 | | | | A.1.3 Linear Discrete System and Modeling, 334 | | | | A.1.4 Linear Time-Invariant Discrete Stochastic Systems, 335 | | | Α 2 | Parameter Estimation of Dynamic Systems, 341 | | | 11.2 | A.2.1 Least Squares, 341 | | | | A.2.2 Statistical Property of Least-Squares Estimator, 342 | | | | A.2.3 Recursive Least-Squares Estimator, 344 | | | | A.2.4 Least-Squares Estimator for Slow Time-Varying | | | | Parameters, 347 | | | | A.2.5 Generalized Least-Squares Estimator, 348 | | | A.3 | State Estimation of Dynamic Systems, 349 | | | A.4 | Joint State and Parameter Estimation of Dynamic Systems, 351 | | | | A.4.1 Extended Kalman Filter, 351 | | | | A.4.2 Singular Pencil Model, 353 | | | A.5 | Enhancement of Numerical Stability of Parameter and State | | | | Estimation, 356 A.5.1 Square-Root Algorithm, 357 | | | | A.5.1 Square-Root Algorithm, 357 A.5.2 UDU ^T Covariance Factorization Algorithm, 358 | | | ۸ 6 | Modeling and Parameter Identification, 361 | | | 71.0 | References, 363 | | | Append | dix B Advanced Dynamic System Control Techniques | 365 | | B.1 | Pole Placement of Control System, 366 | | | B.2 | | | | | B.2.1 Optimal Control Problem Formulation, 371 | | | | B.2.2 Pontryagin's Maximum Method, 372 | | | | B.2.3 | Dynamic Programming, 374 | |-------------|--------|--| | | B.2.4 | Linear Quadratic Control, 378 | | B.3 | Stocha | stic and Adaptive Control, 381 | | | B.3.1 | Minimum-Variance Prediction and Control, 382 | | | | B.3.1.1 Minimum-Variance Prediction, 382 | | | | B.3.1.2 Minimum-Variance Control, 385 | | | B.3.2 | Self-Tuning Control, 387 | | | B.3.3 | Model Reference Adaptive Control, 389 | | | B.3.4 | Model Predictive Control, 391 | | B .4 | Fault- | Tolerant Control, 392 | | | B.4.1 | Hardware Redundant Control, 394 | | | B.4.2 | Software Redundant Control, 394 | | | Refere | inces 395 | Index 397