About the Author

Christer Ericson is a senior principal programmer and the tools and
technology lead at Sony Computer Entertainment America in Santa
Monica. Before joining Sony in 1999, he was a senior programmer at
Neversoft Entertainment. Christer received his Masters degree in
computer science from Umed University, Sweden, where he also
lectured for several years before moving to the US in 1996. Christer
has served on the advisory board for Full Sail's Game Design and
Development degree program since 2002. His interests are varied, but
he takes a particular interest in program optimization, a topic he has
spoken on at the Game Developers Conference.

Contents

List of Figures
Preface

Chapter 1
Introduction

1.1 Content Overview 2
1.1.1 Chapter 2: Collision Detection Design Issues 2
1.1.2 Chapter 3: A Math and Geometry Primer 2
1.1.3 Chapter 4: BoundingVolumes 3
1.1.4 Chapter 5: Basic Primitive Tests 3
1.1.5 Chapter 6: Bounding Volume Hierarchies 3
1.1.6 Chapter 7: Spatial Partitioning 3
1.1.7 Chapter 8: BSP Tree Hierarchies 4
1.1.8 Chapter 9: Convexity-based Methods 4
1.1.9 Chapter 10: GPU-assisted Collision Detection 4
1.1.10 Chapter 11: Numerical Robustness 4
1.1.11 Chapter 12: Geometrical Robustness 4
1.1.12 Chapter 13: Optimization 5

1.2 About the Code 5

Chapter 2

Collision Detection Design Issues

2.1 Collision Algorithm Design Factors 7

2.2 Application Domain Representation 8
221 Object Representations 8
2.2.2 Collision Versus Rendering Geometry 11
2.2.3 Collision Algorithm Specialization 12

2.3 Types of Queries 13

2.4 Environment Simulation Parameters 14

00V

X Contents

241

Number of Objects 14

2.4.2 Sequential Versus Simultaneous Motion 15
2.4.3 Discrete Versus Continuous Motion 16
2.5 Performance 17

251

Optimization Overview 18

2.6 Robustness 19
2.7 Ease of Implementation and Use 19

2.7

Debugging a Collision Detection System 20

2.8 Summary 21

Chapter 3

A Math and Geometry Primer 23
3.1 Matrices 23

3.1
312
3.1.3
3.1.4
315
3.1.6

Matrix Arithmetic 25

Algebraic Identities Involving Matrices 26

Determinants 27

Solving Small Systems of Linear Equation Using Cramer’s Rule 29
Matrix Inverses for 2 x 2 and 3 x 3 Matrices 31

Determinant Predicates 32

3.1.6.1 ORIENT2D(A, B, C) 32

3.1.6.2 ORIENT3D(A, B, C, D) 33

3.1.6.3 INCIRCLE2D(A, B, C, D) 34

3.1.6.4 INSPHERE(A, B, C, D, E) M4

3.2 Coordinate Systems and Points 35
3.3 Vectors 35

3.3.1
332
333
334
335
336
3.3.7
338

Vector Arithmetic 37

Algebraic Identities Involving Vectors 38
The Dot Product 39

Algebraic Identities Involving Dot Products 40
The Cross Product 41

Algebraic Identities Involving Cross Products 44
The Scalar Triple Product 44

Algebraic Identities Involving Scalar Triple Products 46

3.4 Barycentric Coordinates 46
3.5 Lines, Rays, and Segments 53
3.6 Planes and Halfspaces 54

3.7
3.8
3.9
3.10

3N
3.12

Chapter 4

Contents Xi

Polygons 56

3.7.1 Testing Polygonal Convexity 59
Polyhedra 62

3.8.1 Testing Polyhedral Convexity 64
Computing Convex Hulls 64

3.9.1 Andrew’s Algorithm 65

3.9.2 The Quickhull Algorithm 66
Voronoi Regions 69

Minkowski Sum and Difference 70
Summary 72

Bounding Volumes

4.1
4.2

4.3

4.4

45

Desirable BV Characteristics 76

Axis-aligned Bounding Boxes (AABBs) 77

4.2.1 AABB-AABB Intersection 79

4.2.2 Computing and Updating AABBs 81

4.2.3 AABB from the Object Bounding Sphere 82
4.2.4 AABB Reconstructed from Original Point Set 82

75

4.2.5 AABB from Hill-climbing Vertices of the Object Representation 84

4.2.6 AABB Recomputed from Rotated AABB 86
Spheres 88

4.3.1 Sphere-sphere Intersection 88

4.3.2 Computing a Bounding Sphere 89

4.3.3 Bounding Sphere from Direction of Maximum Spread 91
4.3.4 Bounding Sphere Through Iterative Refinement 98
4.3.5 The Minimum Bounding Sphere 99

Oriented Bounding Boxes (OBBs) 101

4.41 OBB-OBB Intersection 101

4.4.2 Making the Separating-axis Test Robust 106

4.4.3 Computing aTight OBB 107

4.4.4 Optimizing PCA-based OBBs 109

4.4.5 Brute-force OBB Fitting 112

Sphere-swept Volumes 112

4.5.1 Sphere-sweptVolume Intersection 114

4.5.2 Computing Sphere-swept BoundingVolumes 115

Xii

Contentis

4.6 Halfspace Intersection Volumes 115
4.6.1 Kay-Kajiya Slab-based Volumes 116
4.6.2 Discrete-orientation Polytopes (k-DOPs) 117
4.6.3 k-DOP-k-DOP Overlap Test 118
4.6.4 Computing and Realigning k-DOPs 119
4.6.5 Approximate Convex Hull Intersection Tests 121
4.7 Other Bounding Volumes 122
4.8 Summary 123

Chapter 5
Basic Primitive Tests

3.1 Closest-point Computations 125
5.1.1 Closest Point on Plane to Point 126
5.1.2 Closest Point on Line Segment to Point 127
5.1.2.1 Distance of Point To Segment 129
5.1.3 Closest Point on AABB to Point 130
5.1.3.1 Distance of Point to AABB 131
5.1.4 Closest Point on OBB (o Point 137
5.1.4.1 Distance of Point to OBB 134
3.1.4.2 Closest Point on 3D Rectangle to Point 135
2.1.5 Closest Point on Triangle to Point 136
.1.6 Closest Point on Tetrahedron to Point 142
5.1.7 Closest Point on Convex Polyhedron to Point 145
5.1.8 Closest Points of Two Lines 146
5.1.9 Closest Points of Two Line Segments 148
5.1.9.1 2D Segment Intersection 151
5.1.10 Closest Points of a Line Segment and a Triangle 153
5.1.11 Closest Points of Two Triangles 155
5.2 Testing Primitives 156
5.2.1 Separating-axis Test 156
5.2.1.1 Robustness of the Separating-axis Test 159
5.2.2 Testing Sphere Against Plane 160
5.2.3 Testing Box Against Plane 161
5.2.4 Testing Cone Against Plane 164
5.2.5 Testing Sphere Against AABB 165

125

5.3

5.4

55

5.6

Chapter 6

52.6
527
528
525

Contents

Testing Sphere Against OBB 166
Testing Sphere Against Triangle 167
Testing Sphere Against Polygon 168
Testing AABB Against Triangle 169

5.2.10 Testing Triangle Against Triangle 172
Intersecting Lines, Rays, and (Directed) Segments 175

5.3.1
5.3.2
533
534
535
536
5.3.7
538

Intersecting Segment Against Plane 175

Intersecting Ray or Segment Against Sphere 177

Intersecting Ray or Segment Against Box 179

Intersecting Line Against Triangle 184

Intersecting Line Against Quadrilateral 188

Intersecting Ray or Segment Against Triangle 190
Intersecting Ray or Segment Against Cylinder 194
Intersecting Ray or Segment Against Convex Polyhedron 198

Additional Tests 201

5.4.1
542
5.43
544
54.5

Testing Point in Polygon 201
Testing Point in Triangle 203
Testing Point in Polyhedron 206
Intersection of Two Planes 207
Intersection of Three Planes 211

Dynamic Intersection Tests 214

5.5.1

5.5.2
553
554
5.5.5
556
5.5.7
5.5.8

Interval Halving for Intersecting Moving Objects 215
Separating Axis Test for Moving Convex Objects 219
Intersecting Moving Sphere Against Plane 219

Intersecting Moving AABB Against Plane 222

Intersecting Moving Sphere Against Sphere 223

Intersecting Moving Sphere Against Triangle (and Polygon) 226
Intersecting Moving Sphere Against AABB 228

Intersecting Moving AABB Against AABB 230

Summary 232

Bounding Volume Hierarchies

6.1

Hierarchy Design Issues 236

6.1.1

Desired BVH Characteristics 236

xiii

235

S

xiv Contents

6.2

6.3

6.4

6.5

6.6

6.1.2 Cost Functions 237
6.1.3 Tree Degree 238
Building Strategies for Hierarchy Construction 239
6.2.1 Top-down Construction 240
6.2.1.1 Partitioning Strategies 241
6.2.1.2 Choice of Partitioning Axis 243
6.2.1.3 Choice of Split Point 244
6.2.2 Bottom-up Construction 245
6.2.2.1 Improved Bottom-up Construction 247
6.2.2.2 Other Bottom-up Construction Strategies 249
6.2.2.3 Bottom-up n1-ary Clustering Trees 250
6.2.3 Incremental (Insertion) Construction 251
6.2.3.1 The Goldsmith-Salmon Incremental Construction
Method 252
Hierarchy Traversal 253
6.3.1 Descent Rules 254
6.3.2 Generic Informed Depth-first Traversal 256
6.3.3 Simultaneous Depth-first Traversal 259
6.3.4 Optimized Leaf-direct Depth-first Traversal 260
Sample Bounding Volume Hierarchies 261
6.4.1 OBBTrees 261
6.4.2 AABB Trees and BoxTrees 262
6.4.3 Sphere Tree Through Octree Subdivision 263
6.44 Sphere Tree from Sphere-covered Surfaces 264
6.4.5 Generate-and-Prune Sphere Covering 264
6.46 k-dopTrees 265
Merging Bounding Volumes 266
6.51 Merging Two AABBs 267
6.5.2 Merging Two Spheres 267
6.53 Merging Two OBBs 269
6.54 Merging Two k-DOPs 269
Efficient Tree Representation and Traversal 270
6.6.1 Array Representation 270
6.6.2 Preorder Traversal Order 272
6.6.3 Offsets Instead of Pointers 273

6.7

6.8

Chapter 7

Contents

6.6.4 Cache-friendlier Structures (Nonbinary Trees) 274
6.6.5 Tree Node and Primitive Ordering 275

6.6.6 OnRecursion 276

6.6.7 Grouping Queries 278

Improved Queries Through Caching 280

6.7.1 Surface Caching: Caching Intersecting Primitives 280
6.7.2 FrontTracking 282

Summary 284

Spatial Partitioning

7.1

7.2

7.3

7.4

Uniform Grids 285

7.1.1 Cell Size Issues 286

7.1.2 Grids as Arrays of Linked Lists 287

7.1.3 Hashed Storage and Infinite Grids 288

7.1.4 Storing Static Data 290

7.1.5 Implicit Grids 291

7.1.6 Uniform Grid Object-Object Test 294
7.1.6.1 OneTest ataTime 295
7.1.6.2 AllTests at aTime 297

7.1.7 Additional Grid Considerations 299

Hierarchical Grids 300

7.2.1 Basic Hgrid Iimplementation 302

7.2.2 Alternative Hierarchical Grid Representations 306

7.2.3 Other Hierarchical Grids 307

Trees 307

7.3.1 Octrees (and Quadtrees) 308

7.3.2 Octree Object Assignment 309

7.3.3 Locational Codes and Finding the Octant for a Point 313

7.3.4 Linear Octrees {Hash-based) 314

7.3.5 Computing the Morton Key 316

7.3.6 Loose Octrees 318

7.3.7 k-dTrees 319

7.3.8 Hybrid Schemes 321

Ray and Directed Line Segment Traversals 322

XV

285

T EEeee——

xvi Contents Contents Xvii

7.4.1 k-dTree Intersection Test 322 9.2 Closest-features Algorithms 385
7.4.2 Uniform Grid Intersection Test 324 9.2.1 TheV-Clip Algorithm 386

7.5 Sort and Sweep Methods 329 9.3 Hierarchical Polyhedron Representations 388
7.5.1 Sorted Linked-list Implementation 330 9.3.1 The Dobkin—Kirkpatrick Hierarchy 389
7.5.2 Array-based Sorting 336 9.4 Linear and Quadratic Programming 391

7.6 Cells and Portals 338 9.4.1 Linear Programming 391

7.7 Avoiding Retesting 341 9.4.1.1 Fourier-Motzkin Elimination 394
7.7.1 Bit Flags 341 9.4.1.2 Seidel’s Algorithm 396
7.7.2 Time Stamping 342 9.4.2 Quadratic Programming 398
/7.3 Amortized Time Stamp Clearing 344 9.5 The Gilbert-Johnson—Keerthi Algorithm 399

7.8 Summary 346 9.5.1 The Gilbert-Johnson—Keerthi Algorithm 400

9.5.2 Finding the Point of Minimum Norm in a Simplex 403

Chapter 8 9.5.3 GJK, Closest Points and Contact Manifolds 405
BSP Tree Hierarchies 349 9.5.4 Hill Climbing for Extreme Vertices 405
8.1 BSPTrees 349 9.5.5 Exploiting Coherence by Vertex Caching 407
8.2 Types of BSP Trees 351 9.5.6 Rotated Objects Optimization 408
8.2.1 Node-storing BSP Trees 351 9.5.7 GJKfor Moving Objects 408
8.2.2 Leaf-storing BSP Trees 352 9.6 The Chung-Wang Separating-vector Algorithm 410
8.2.3 Solid-leaf BSP Trees 354 9.7 Summary 412
8.3 Building the BSP Tree 355
8.3.1 Selecting Dividing Planes 358 Chapter 10
8.3.2 Evaluating Dividing Planes 361 GPU-assisted Collision Detection 413
8.3.3 Classifying Polygons with Respect to a Plane 364 10.1 Interfacing with the GPU 414
8.3.4 Splitting Polygons Against a Plane 367 10.1.1 Buffer Readbacks 414
8.3.5 More on Polygon Splitiing Robustness 372 10.1.2 Occlusion Queries 416
83.6 Tuning BSP Tree Performance 373 10.2 Testing Convex Objects 416
84 Using the BSPTree 374 10.3 Testing Concave Objects 420
8.4.1 Testing a Point Against a Solid-leaf BSP Tree 374 10.4 GPU-based Collision Filtering 423
8.4.2 Intersecting a Ray Against a Solid leaf BSP Tree 376 10.5 Summary 426
8.4.3 Polytope Queries on Solid-leaf BSP Trees 378
8.5 Summary 381 Chapter 11
Numerical Robustness 427
Chapter 9 11.1 Robustness Problem Types 427
Convexity-based Methods 383 11.2 Representing Real Numbers 429

9.1 Boundary-based Collision Detection 383 11.2.1 The IEEE-754 Floating-point Formats 431

xviii

Contents

11.2.2 Infinity Arithmetic 435
11.2.3 Floating-point Error Sources 438
11.3 Robust Floating-point Usage 441
11.3.1 Tolerance Comparisons for Floating-point Values 441
11.3.2 Robustness Through Thick Planes 444
11.3.3 Robustness Through Sharing of Calculations 446
11.3.4 Robustness of Fat Objects 448
114 Interval Arithmetic 448
11.4.1 Interval Arithmetic Examples 450
11.4.2 Interval Arithmetic in Collision Detection 451
11.5 Exact and Semi-exact Computation 452
11.5.1 Exact Arithmetic Using Integers 453
11.5.2 Integer Division 457
11.5.3 Segment Intersection Using Integer Arithmetic 459
11.6 Further Suggestions for Improving Robustness 462
11.7 Summary 463

Chapter 12

Geometrical Robustness
12.1 VertexWelding 466
12.2 Computing Adjacency Information 474
12.2.1 Computing a Vertex-to-Face Table 477
12.2.2 Computing an Edge-to-Face Table 479
12.2.3 Testing Connectedness 482
12.3 Holes, Cracks, Gaps and T-Junctions 484
124 Merging Co-planar Faces 487
12.4.1 "lesting Co-planarity of Two Polygons 489
12.4.2 Testing Polygon Planarity 491
12.5 Triangulation and Convex Partitioning 495
12.5.1 Triangulation by Ear Cutting 496
12.5.1.1 Triangulating Polygons with Holes 499
12.5.2° Convex Decomposition of Polygons 500
12.5.3 Convex Decomposition of Polyhedra 502
12.5.4 Dealing with “Nondecomposable” Concave Geometry 506

465

126
12.7

A R R R EEERRA—E .,

Contents Xix

Consistency Testing Using Euler’s Formula 507
Summary 510

Chapter 13

Optimization 511

13.1
13.2
13.3

13.4

135

13.6

13.7

13.8
13.9

CPU Caches 513

Instruction Cache Optimizations 515

Data Cache Optimizations 517

13.3.1 Structure Optimizations 518

13.3.2 Quantized and Compressed Vertex Dala 522
13.3.3 Prefetching and Preloading 523

Cache-aware Data Structures and Algorithms 525
13.4.1 A Compact Static k-d Tree 525

13.4.2 A Compact AABBTree 529

13.4.3 Cache Obliviousness 530

Software Caching 531

13.5.1 Cached Linearization Example 532

13.5.2 Amortized Predictive Linearization Caching 535
Aliasing 536

13.6.1 Type-based Alias Analysis 538

13.6.2 Restricted Pointers 540

13.6.3 Avoiding Aliasing 542

Parallelism Through SIMD Optimizations 543

13.7.1 Four Spheres Versus Four Spheres SIMD Test 545
13.7.2 Four SpheresVersus Four AABBs SIMD Test 546
13.7.3 Four AABBs Versus Four AABBs SIMD Test 546
Branching 547

Summary 551

References 553

Index

577

About the CD ROM 51

Preface

Together with a friend, T wrote my first computer game as a preteen, in 1978—the
same year as Space Invaders was released. Written in BASIC, our game was a quiz
game where you were asked questions about African animals. Compared to Space
Invaders, our text-based game was primitive and not very exciting. Still, we were
hooked, and it was not long until we were writing copies on our home computers,
not only of Space Invaders but also of many other arcade games of that period, not to
mention creating an endless number of original games of our own design, My then-
hobby of writing games has today become my day job and games have evolved into a
multi-billion dollar industry, which—for better or waorse-—virtually single-handedly
drives the development of graphics hardware and fuels the need for increasingly more
powerful CPUs.

Back then, one of the main challenges to writing an action game was dealing with
collision detection: the problem of determining if an object had intersected another
object or overlapped relevant background scenery. Since games were (primarily) 2D,
collision detection involved determining overlap in screen space in efficient ways.
Interestingly, even though computers today are over 1000 times faster, collision detec-
tion remains a key challenge. Today, game worlds are predominantly in 3D. They are
of incredible complexity, containing tens if not hundreds of millions of polygons. Col-
lision detection solutions now require sophisticated data structures and algorithms
to deal with such large data sets, all of this taking place in real-time. Of course, games
are not the only applications having to solve complex collision detection problems in
real-time; other applications, such as CAD/CAM systems and 3D modeling programs
must also address these problems.

The goal of this book is to provide efficient solutions for games and all other real-
time applications to address their collision detection problems. To make this possible,
this book provides an extensive coverage of the data structures and algorithms related
to collision detection systems. Implementing collision detection systems also requires
a good understanding of various mathematical concepts, which this book also focuses
on. Special care has been taken to discuss only practical solutions, and code and
pseudocode is provided to aid the implementation of the methods discussed in the
book,

Overall, collision detection is a very large topic. Every chapter in this book could
easily form the basis of a book each. As such, the coverage has been restricted to the
most important areas and that provide a solid foundation for further exploration into
this rich field.

Xxxvii

