Developing a Document Scanning App

Summary

In this chapter, we saw how we could use multiple computer vision algorithms to

perform a bigger task and implemented a system similar to Microsoft's Office Lens.

This algorithm can be extended and made better using better segmentation and
corner detection algorithms. Also, once you have the page in the resulting image,
you can apply machine learning algorithms to detect the text on the page.

[190]

A

adaptive thresholding
about 20, 21
adaptive method 20
block size 20
c2
affine transformation 121
Android NDK
download link 138
setting up 138, 139

automatic panoramic straightening 134

B

basic 2D transformations
about 120,121
affine 121
projective 122
rigid 121
translation 121
best practices
about 169
data, handling between
multiple activities 172
images, handling in Android 170
BRIEF
about 71
correlation 73
steered BRIEF 72
variance 72
BRISK (Binary Robust Invariant
Scalable Keypoints)
about 74

Index

in OpenCV 78

keypoint description 76

scale-space keypoint detection 74, 75
bundle adjustment 134

C

Canny Edge detection
about 32,33
edge selection, through hysteresis
thresholding 32
gradient of image, calculating 32
image, smoothing 32
non-maximal supression 32
Canny Edge detector
about 32
reference 32
cascade classifiers
about 83, 84
Haar cascades 84, 85
LBP cascades 85, 86
used, for face detection 86-93
cautions, for building application
duplicate data 169
limited computational capacity 170
memory leaks 169
network usage 170
Contour detection
implementation 42, 43
Contours
about 42
reference, for hierarchies 44
custom kernels
creating 15, 16

[191]



D

data, handling between multiple activities
about 172
database, using 174
data, transferring via Intent 173
file, using 174
static fields, using 173
Difference of Gaussian (DoG) 29-31, 52
dilation
about 16
applying 17
distance between vectors
defining 151
document scanning app
algorithm 177,178
developing 175-177
implementing, on Android 179-189

E

Edge detection and Corner detection
about 28
Canny Edge detector 32, 33
Difference of Gaussian {(DoG) 29-31
Harris Corner detection 36-38
Sobel operator 34-36

erosion
about 18
applying 18

errors, troubleshooting
about 165
code, debugging with Logcat 168
permission errors 165-167

F

face detection
performing, cascade classifier used 86-93
FAST
about 70
BAST detector 70
orjentation, by intensity centroid 71
fast Hessian detector 65
Fast Library for Approximate Nearest
Neighbors. See FLANN

Fast Retina Keypoint (FREAK)
about 79
coarse-to-fine descriptor 80
in OpenCV 81
orientation 81
retinal sampling pattern 79
saccadic search 80
feature description 48
feature detection 48
feature matching 47
features 47
Features App
creating 23-28
FLANN 69

G

gain compensation 135
Gaussian blar 12,13
GaussianBlur function 13
Gaussian kernel

about 12,13

reference 13
Gaussian pyramid

about 112,113

creating, in OpenCV 114-120
global motion estimation 122-124

H

Haar cascades 84, 85
Happy Camera project
about 96, 97
faces and smiles, correlating 97
happy images, tagging 97
image, saving 97
smile detector, adding 97
Harris corner detection
about 36
implementing 37, 38
Harris corner detector 36, 53
Hessian matrix 54
Histogram of Oriented Gradients
(HOG) descriptors
about 93
cells, combining to form biocks 94

[192]

classifier, building 94
gradient, computing 93
orientation binning 94
using 94-96
working 93
Hough transformations
about 38 ‘
Hough circles 40
Hough circles implementation 41, 42
Hough lines 38-40

illumination dependence 57
image matching
about 132
homography estimation,
RANSAC used 132
verification, using probabilistic
model 132,133
image pyramids
about 104, 111
expand operation 112
Gaussian pyramids 112,113
Laplacian pyramids 114
reduce operation 112
images
effects, applying 2
storing, in OpenCV 4
images, handling in Android
about 170
images, loading 170
images, processing 171
image stitching
about 129
Android NDK, sefting up 138, 139
automatic panoramic straightening 134
bundle adjustment 134
C++ code 143-146
feature detection 130, 131
gain compensation 135
image matching 132
implementing 137

Java code, writing 140-142
layout 139
multi-band blending 136
OpenCV, used 137
performing 129

integral images
reference link 85

Intent class 173

K

Kanade-Lucas-Tomasi (KLT) tracker
about 125
implementing 125
implementing, on OpenCV 125-127
keypoint description
about 76
descriptor, building 77
sampling pattern and rotation
estimation 76, 77
k-nearest neighbors (KNN) 150

L

Laplacian pyramids
about 114
creating, in OpenCV 114-12¢
Least Square Error 103
linear filters
about 5,6
adaptive thresholding 20
custom kernels, creating: 15, 16
Gaussian blur 12,13
mean filter 6-11
median blur 14
morphological operations 16
thresholding 19
Local Binary Patterns (LBP) cascades 85, 86
Logcat
reference 169
Log class
reference 169

[193]



machine learning 149
Mat object 4
matching features
about 59
brute-force matcher 60
FLANN based matcher 60
objects, detecting 64, 65
points, matching 60-63
mean filter
about 6-10
applying 11
median blur
about 14
applying 14
menus in Android
reference 24
MNIST database
about 153
URL 153
morphological operations
about 16
dilation 16,17
erosion 18
multi-band blending 136

0O

object tracking
about 99
in videos 99

OCR, using k-nearest neighbors

about 150

camera application, building 151, 152
digits, recognizing 158-160
training data, handling 153-157

oFAST 70
OpenCV
about 2
linear filters 5
settingup 2,3
OpenCV4Android SDK
URL 3

Optical Character Recognition (OCR)
about 149, 150
k-nearest neighbors, used 150, 151
Support Vector Machines (SVMs),
used 160-162
optical flow
about 99, 100
Horn and Schunck method 101
implementing, on Android 105-110
Lucas and Kanade method 101-104
Oriented FAST and Rotated BRIEF (ORB)
about 70
contributions 70
in OpenCV 73
oFAST 70
rBRIEF 71

P

permission errors

about 165-167

common permissions 167, 168
Prewitt operator

reference 36
projective transformation 122
pseudo-inverse 103

R

¥BRIEF 71
rigid fransformation 121
rotation dependence 56

S

Scale Invariant Feature Transform (SIFT)
about 48
keypoint descriptor 55-57
keypoint localization 52-54
orientation assignment 54, 55
properties 48
scale-space extrema detection 49-52
setting up, in OpenCV 57-59
URL 48
working 49

[194]

Sobel operator
about 34
using 34-36
Speeded Up Robust Features {SURF)
about 65
in OpenCV 69
URL 66
Sudoku puzzle project
digits, recognizing 162-164
puzzle, detecting in image 44-46
puzzle, solving 162
Support Vector Machines (SVM) 150, 160
SUREF descriptor
about 67
based on Haar wavelet responses 68
orientation assignment 67, 68
SUREF detector 65, 66

T

thresholding
about 19
constants 19
reference 20
translation transformation 121

U

U-SURF 67

[195]



